Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
2.
Signal Transduct Target Ther ; 7(1): 42, 2022 02 08.
Article in English | MEDLINE | ID: covidwho-1683981

ABSTRACT

SARS-CoV-2 variants have evolved a variety of critical mutations, leading to antigenicity changes and immune escape. The recent emerging SARS-CoV-2 Omicron variant attracted global attention due to its significant resistance to current antibody therapies and vaccines. Here, we profiled the mutations of Omicron and other various circulating SARS-CoV-2 variants in parallel by computational interface analysis and in vitro experimental assays. We identified critical mutations that lead to antigenicity changes and diminished neutralization efficiency of a panel of 14 antibodies due to diverse molecular mechanisms influencing the antigen-antibody interaction. Our study identified that Omicron exhibited extraordinary potency in immune escape compared to the other variants of concern, and explores the application of computational interface analysis in SARS-CoV-2 mutation surveillance and demonstrates its potential for the early identification of concerning variants, providing preliminary guidance for neutralizing antibody therapy.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antigens, Viral , COVID-19 , Immune Evasion , SARS-CoV-2 , Antigens, Viral/genetics , Antigens, Viral/immunology , COVID-19/genetics , COVID-19/immunology , HEK293 Cells , Humans , SARS-CoV-2/genetics , SARS-CoV-2/immunology
SELECTION OF CITATIONS
SEARCH DETAIL